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This paper focuses on the theoretical simulation of fracture and stable crack growth of specimens 
with non-local damage. The first law of thermodynamics allows the identification or 
definition of appropriate crack-driving forces. The results are compared with recent ideas on 
defining tearing resistance for uncontained yield through the energy dissipation rate. A hypothesis 
regarding the conversion of mechanical into thermal energies within the non-local damage region 
is formulated to model the fracture behaviour of energy dissipative materials with rising crack 
resistance characteristics. The material's capacity to develop non-local damage is assumed to 
decrease with the actual damage level. This decrease relates linearly with the remaining resources 
of the material in dissipating energy. The hypothesis, which proposes a square root function 
for theoretical J-R curves, is verified by the regression analysis of experimental data regarding 
a European round-robin test of different steels. 

1, I n t r o d u c t i o n  
This paper deals with the way in which the energy 
balance should be formulated when non-local damage 
processes associated with energy dissipation accom- 
pany crack growth. The question is raised whether 
fracture resistance relates to energy rate asssociated 
with material separation, or whether it is related to 
work consumed in fracture and non-local damage. 
The local energy balance is used to rearrange the 
relationships between the different energies consumed 
both in the process of material separation and due to 
non-local damaging (plastic deformation, microvoid 
growth and linkage, cracking of inclusions, transform- 
ing particles, stochastic fibre failure [1, 2]) around the 
crack tip. The energy balance aids the decision to 
utilize a measure of the total resistance to fracture or 
only the separation part as toughness. 

2. Local energy balance 
The total work done per unit time, 8/J, within a thin 
disc of thickness gx3 (Fig. 1) can be related to the rate 
of change in the kinetic energy, 6/s the recoverable 
internal energy rate, g I~, and the energy, 8+, con- 
sumed irreversibly per unit time in an energy dis- 
sipative damage region, Ao, by 

~U = ~K + ~ W +  ~q' (1) 

8d) includes the energy used up just in material sep- 
aration. The symbol 8 points explicitly to the peculiar- 
ities in considering an infinitesimally thin disc, which 
has been chosen to obtain a model for local fracture 
behaviour. The total energy rate is the sum of mechan- 
ical and thermal work done per unit time within the 
volume 8V (first integral) and through its surface 
(A-top + A-bottom + FSx3). The region A excludes 
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the damage region A0 shielding the crack tip. 

~f'=~x3I;Ai(Fi1"li~-h)dA-~Ci(~'licYi3--q3)3dA 
da J 

+ fr(~,tY,k -- qk)nkdF; (2) 

where F = body force; h = displacement velocity 
h = heat sources; c i k =  components of the (first 
Piola-Kirchhoff) stress tensor; q = heat flux; and 
n = outer unit normal vector (two-dimensional). A dot 
marks total time derivative, indices following 
a comma denote local, partial derivatives. The local 
derivative in the second integral is based on the differ- 
ent signs of the unit vectors associated with A-top and 
A-bottom. 

M;+SdV=Sx3fAfP(k+;OdA 
-- I t  p(k + w)vjnAdA (3) 

JJ 8Ao(t) 

The symbols k and w denote the specific kinetic and 
internal energy density, respectively. The second in- 
tegral accounts for the momentary change of the 
orientable interface 8Ao(t) between the damage region 
and its surrounding. Usually, the time dependence of 
the integration boundary 8Ao(t) has been neglected. 
Each single component of 8Ao (t) moves with a corres- 
ponding local velocity, vl taking into account a po- 
tential growth of the damage region. Generally, the 
interface is curved. Its local unit normal vector n A is 
a three-dimensional one in contradiction to n, which is 
within the (1, 2)-plane only. The minus sign of the 
second term originates from the definition of n A, which 
points to the surrounding region A. The local energy 
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Figure 1 Local crack front with energy dissipative damage region, 
A0. 

change rate balance, which is valid only in the region 
beyond Ao is given by: 

PW = (Yij hi, j - -  qi, i -[- h (4) 

In order to simplify the integrals in Equations 2 
and 3, the divergence theorem of Gauss is invoked to 
replace the surface integrals regarding heat flux by 
a volume integral: 

8x3[frqkn ,dF + f fq3,3dA ] 

-- f f S A o ( t ) q k n A d A = 6 X 3 f A f q k , k d A  (5) 

Note that Equation 5 is a special way of writing the 
divergence theorem, taking into account the peculiar- 
ities of an infinitesimally thin disc. 8x3A is the volume 
enclosed by A-bottom, A-top, the external boundary 
8x3F and the internal surface SAp(t). The second term 
corresponds to two surface integrals. The partial x3- 
derivative originates from the different signs of the 
outer unit normal vectors characterizing A-top and 
A-bottom. Combining Equations 1-5 gives 

o 

lim 8@ _- i~i = ((hir~iknk)d F 
8xa ~ 0 ~X3 

- -  I I ( p h i f f i - F i h i +  ~  
J A d  

+ fA .f(~i~ 

+ fro,,, p(k + w)(vjnj + v3)dr 

-- F (qjnj + q3)dF (6) 
dr o(t) 

Equation 6 corresponds to a change from the 
global energy balance of the volume 6V to a local 
energy balance in the plane x3 = constant, n denotes 
the plane unit normal vector to Fo. The relationships 
between the three components of the unit normal 

vector n A to the curved interface 6Ao and the two 
components of n are given by [-3] 

n i - ( l _ n ~ 2 )  t/2 ( j =  1,2) (7) 

Assuming stable crack advance the actual crack 
length, a, correlates straightforwardly with time. 
Changing from the space-fixed coordinate system to 
a moving reference system, which is attached on the 
crack tip or strictly speaking on the centre of the 
damage region, and excluding explicit time-dependent 
�9 dynamic loading gives 

h i = - -  Ui,ja j (8) 

The velocity d characterizes the crack growth rate. 
Now Equation 6 is modified to 

fI=[-frUi,k~,jnjdF 

+ f  f(pkk--F~ui,k+~ijui, j k ) d A ,  

+faf(ui, kcri3),3 dA 

+ froP(k + w)(nk + Sk3)dFl&k 

- F p(k + w)(nk + 8k3)AvkdF 
2 Fo 

+ l "  (qjnj + q3)dF (9) 
j r  o 

with 

Av = v - d (10) 

The terms in brackets may be interpreted as the real 
crack driving force, because they are the only ones 
which associate directly with crack advance. The 
meaning of the bracketed expression in Equation 9 
corresponds to that of the elastic energy release rate 
per unit thickness for real elastic-plastic materials, I, 
defined by Turner [-4] some years ago. But generaliz- 
ing Turner's fracture parameter, I, the expressions 
summarized by the brackets denote the components of 
a vector or*. To avoid confusion with the/-integral of 
Aoki et al. [5], the symbol J* has been chosen to mark 
the crack driving force. 

The concept of a damage region around the crack 
has been ill-defined hitherto. Therefore a critical inter- 
nal energy density, pwo, specific to the material, is 
brought in which defines the outer contour, Fo, of the 
damage region with the cross sectional area, Ao. 
Neglecting kinetic energies and assuming pw = 9Wo 
on Fo gives 

pwoF (nk + 8 k 3 ) d F  = 0 (11) 
3 Fo 

which means that the last integral in the brackets 
vanishes, and 

f r  dAo. (12) pwo (nk + 5k3)AvkdF = pwo dt 
o 
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As long as the non-local damage zone is embedded 
within a non-damaged 'singularity' region (contained 
yielding) the J* integrals are 'path independent', pro- 
vided the outer contour F is beyond the inner bound- 
ary Fo. Their Values are then always 

= -- ~ Ul, kfYijnjdl-" (k = 1,2,3) (13) J* 
,)r o 

If the contour Fo approaches the specimen boundaries 
(uncontained yielding) both the crack driving force, 
J*, and the fracture energy rate, I~I, become system- 
dependent. 

The first law of thermodynamics, depicted math- 
ematically by Equation 9, gives the motivation to 
apply J* as a crack-driving force. It does not allow 
any statement on its critical values which control 
crack growth initiation or stable crack advance. Only 
additional assumptions [6] accounting for energy dis- 
sipation yield an appropriate criterion for stable crack 
growth. In order to discuss the conversion of mech- 
anical into thermal energies, the energy balance 
Equation 9 may be simplified invoking Equations 12 
and 13 

dH = J*dak + pwodAo - (T )dS  (14) 

where ( T ) =  medium temperature of the non-local 
damage region, and S = entropy. 

3. Stable crack growth 
The schematic depiction (Equation 14) of energy bal- 
ance Equation 9 justifies a differentiation between 
energies used for crack driving and work dissipated in 
non-local damaging. Commonly, fracture tests do not 
capture the energy dissipated in heat. The first two 
terms of Equation 14 correspond to an increment of 
the 'available energy dissipation', introduced by 
Turner [7], taking into consideration that the dom- 
inant term in real elastic-plastic material fracture tests 
is the work rate used up by the combined plastic 
deformation and the fracture process. The third term 
denotes the heat transfer through the boundary Fo of 
the non-local damage region at temperature (T) .  
Comparing the original energy balance (Equation 1), 
Equation 14 and the definition of Turner's energy 
dissipation rate, D, gives 

f ~ [  + pwo dAo-]A D - d(t.7 - 1~)_  1 J* -d-~-a/dxa (15) 
Bda B o 

The right-hand side of Equation 15 describes the total 
crack-growth resistance. The left-hand side may be 
seen as the crack-driving force. Note that the change, 
d lY, in internal energy averaged over thickness, B, 
excludes heat flux. This means it accounts only for the 
elastic strain energy (Equation 4). 

Equation 15 says that the crack-growth resistance 
and the crack-driving force must have the same size. It 
provides a condition for crack extension which is only 
necessary but not sufficient. An additional assumption 
is needed to characterize stable crack growth. The 
term describing the growth of the non-local damage 
region is not available to the actual separation pro- 

cess. Therefore it should be more appropriate to use 
a crack-growth resistance curve based immediately on 
the J* integral as the fracture energy rate. Much of the 
work input is dissipated in plasticity which damages 
material adjacent to the crack but may not contribute 
directly to the crack driving force J*. Neglecting resid- 
ual stresses, this means 

and therefore 

dAo dS (16) 
pwo ~ = ( T )  d-a 

dH 
- J *  ( 1 7 )  

da 

Accounting for conversion of mechanical into thermal 
energies, which is done by Equation 16, Equation 17 
characterizes the mechanical energy consumed in 
stable material separation. The crack extension force 
has to be determined from the energy change arising 
from crack advance in the presence of the shielding 
process region, but without producing new plasticity 
or non-local damage. Fracture toughening originates 
from the reduced crack-driving force by internal 
shielding. Following the notation of Turner [4], the 
elastic energy release rate for real elastic-plastic ma- 
terial has been defined as I, with the remark that the 
physical meaning of I as the elastic energy release rate 
for real elastic-plastic material corresponds with that 
of the present author's J*. But a significant difference 
between J* and I arises out of averaging the latter 
over the thickness, B. 

4. Laboratory measurement 
Assuming contained yield, the energy release rate in- 
terpretation of J* corresponds approximately with the 
laboratory measurement, JD, based on a deformation 
plasticity assumption [8] for elastic-plastic material 
behaviour. Both J* and Jt~ exclude the energy dis- 
sipated in producing new non-local damage or plasti- 
city. Generally, both the crack length and the size of 
the non-local damage region vary under a J-R curve 
test. Invoking the deformation theory of plasticity, the 
actual loading path of the load-displacement curve 
P(A) is substituted by a deformation path (Fig, 2) 
representing the load~lisplacement behaviour when 
the crack size is fixed. The area under this curve 
represents the strain energy in a non-linear elastic 
material. The laboratory evaluation of Jo is based on 
the fictitious non-linear elastic loading curve. When 
the J integral for an elastic-plastic material is deter- 
mined by this method, the energy release rate inter- 
pretation of J is restored. A significant difference 
between J* and JD originates from the definition of 
the former as a local fracture parameter characterizing 
the crack growth behaviour in the cross sectional area 
(x3 = constant) in contradiction to the 'global' 
measurement JD averaged over the thickness, B, or net 
thickness as appropriate. Utilizing single-specimen 
unloading compliance tests the actual values of JD are 
calculated incrementally, as the deformation path de- 
pends on crack length. Only the components A~ and 
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Figure 2 Schematic load~tisplacement curve for a specimen with 
a crack growing to a~+x and al. The curves OB and OC represent 
the deformation paths associated with the two crack lengths al and 
a~+ 1, respectively. 

At+ 1, which show a non-linear behaviour between AB 
and DC, respectively, need be considered here. The 
corresponding linear elastic terms can be determined 
from the current load and crack size. 

x [1  _ y a i + t b i - a i ]  (18) 

where I /= 2, ~, = 1 (SENB specimen); and ~/= 2 
+ 0.522b/W, y ~ 1 + 0.76b/W (CT specimen). 

If the steps of crack growth are small, the actual 
deformation path need not be known precisely for 
a good estimate of d. 

In order to carry out an experiment in accordance 
with the theoretical results of section 3, a cyclic 
load-unloading test with crack growth may be used, 
as proposed by Sakai [9]. As shown in Fig. 3, the 
curved loading path De  of a loading-unloading cycle 
is shifted to the loading path AB of the foregoing cycle 
by the irreversible residual part 6Air of the displace- 
ment. Then the curved triangle ABE is constructed. 
The contours AB and AE correspond to the load-dis- 
placement relations for two specimens with different 
crack lengths a and a + 8a, respectively. The enclosed 
area, 8U, which accounts for crack-tip shielding, is 
seen to be approximately equivalent to 

8U = J*B6a (19) 

The region AECD is equivalent to BpwoSAo. It is 
consumed to non-local damage. 

5. Regression analysis 
If the stress field near the crack tip is dominated by J*, 
provided that J* control exists, which implies that the 
stress field still scales with J*/cro r, the left-hand side of 
Equation 16 correlates in a straightforward relation- 
ship [3, 8] with the derivation of j , 2  

dAo j ,  d J* (20) 
pw0 -d-d-a oc d---a- 
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Figure 3 Cyclic load-unloading test. 

Chow & Lu [10] deduced an analogous expression for 
non-local damaged, softened materials. According to 
Steven & Guiu [11], the relation above means that the 
energy dissipating process has its effect on fracture, 
because it alters the stress state around the crack tip 
(shielding) and thus reduces the crack driving force J* 
for crack growth. The work done by non-local dam- 
aging does not increase the resistance against separ- 
ation of material. Equation 20 becomes invalid as 
specimen boundaries interact with the damage region. 

Reanalysing data of Mecklenburg & Joyce [12], 
Turner has found that the energy rate consumed dur- 
ing fracture decreases nonlinearly with stable crack 
extension, approaching a constant value. Braga [13] 
reports on analogous behaviour for a 6-2-1-1 titanium 
alloy. Finally, the energy rate consumed in the damage 
region of tough ceramics has been experimentally ob- 
served [14] to diminish rapidly with stable crack ex- 
tension. In the latter case, the micromeehanical 
toughening processes like crack bridging work dnly in 
a small crack-opening regime. 

As a working hypothesis [15] the author assumes 
that these decreases relate linearly with the remaining 
resources of the material in dissipating that energy 
which would be available to accelerate crack growth. 
Assuming/*-controlled crack advance, it is specified 
mathematically by 

dAo dS j z  _ j , 2  
OWo -~a = T da oc 2r* (21) 

The energy rate consumed by non-local damaging 
beyond blunting is assumed to be specific of the ma- 
terial and to vary with the actual crack driving force 
J* or damage level. Equation 21, characterizing the 
condition for stable crack growth, implies a rising 
crack resistance curve. The integration of this para- 
metric equation results i n  

J R : [ J 2 - ( j 2 - j 2 ) e x p ( ~ . a ) ]  1/z J R > J I  (22) 

The value of the parameter r* is seen to correspond to 
the maximum possible non-local damage zone size 
that the material can accumulate. Possibly, specimen 
size values are so far below the material's capacity to 
develop non-local damage corresponding to r* that 
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Figure 6 J-R curve (BS 4360-50E) medium-toughness  material, CT- 
specimen. 
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Figure 5 J-R curve (BS 1501-224-LT50) high-toughness material, 
CT-specimen. 
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Figure 7 J-R curve (5083-0) low-toughness material, CT-specimen. 

T A B L E  I J-R curve regression analysis (A + C•Aa) 1/2 

Toughness  A(N2/mm 2) CR(N2/mm 3) C D AJ 
specimen (%) (N/mm) 

High -- 30690 _____ 9400 432900 _____ 29000 94 48 
CT 

High -- 30000 + 13500 476400 ___ 36800 95 51 
SENB 

Medium 4826 _ 3700 88240 q- 6500 95 18 
CT 

Medium 4242 + 3600 95160 ___ 7300 96 16 
SENB 

Low 176 ___ 120 1339 • 200 91 5 
CT 

Low 47 + 120 1943 • 200 94 3 
SENB 

Confidence level 95%. 
CD = coefficient of determination; AJ = s tandard deviation. 

the specimen size acts as a limiting factor (uncontained 
yielding). Note that then Equation 21 becomes ques- 
tionable. The fracture resistance JR itself is seen as 
a macroscopic instability value associated with a crit- 
ical damage in the micro scale. The integration para- 
meter Ji is the threshold where a critical level of initial 
non-local damage has been reached and fracture en- 
sues. Equation 22 characterizes the real fracture beha- 

viour only beyond an apparent, system-dependent 
crack advance a ~ - a o ,  because single specimen 
unloading compliance tests may reflect the initial non- 
local damage as real crack growth. 

6. Discussion 
Equation 21, like any other fracture criterion, can only 
be verified by comparison with experimental data. The 
result of a regression analysis [-16] is shown in Fig. 4, 
where experimental data for a Si3N4-ceramic at 
1200 ~ from the cyclic loading-unloading test, cor- 
responding to Fig. 3 and the theoretical JR curve 
(Equation 22) are plotted together. This emphasizes 
Equation 21 whichwas proposed to explain the frac- 
ture behaviour of non-local damaged materials with 
rising crack resistance characteristics. 

Assuming small crack advance in comparison with 
the maximum damage zone size parameter, r*, the 
exponential function in Equation 22 may be ap- 
proached by a series expansion. Neglecting the higher 
order terms gives 

JR ~ j z  + ( j 2  _ j z )  = (A + CRAa) x12 

r * > a > a l  (23) 

The parameter Ca characterizes the initial resources 
of the material to convert mechanical into thermal 
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Figure 8 Comparison of J-R curves (low-toughness material). 
Equation 22, ( - - - ) ;  Equation 23, ( . . . . . .  ). 

energies. The regression analysis (Table I) of experi- 
mental data (Figs 5-7) regarding a European round- 
robin test of different steels 1-17] confirms the square 
root function (Equation 23) for a theoretical J - R  
curve. 

These results confirm Equation 21. Note that the 
range of crack advance, which is represented in 
Fig. 7 for the low toughness material, seems to exceed 
the non-local damage zone size parameter r* and the 
regression function (Equaion 23) becomes unusable, 
and should be replaced by Equation 22, as shown in 
Fig. 8. 
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